Roles of chemokine receptor CX3CR1 in maintaining murine bone homeostasis through the regulation of both osteoblasts and osteoclasts.
نویسندگان
چکیده
Chemokines have recently been reported to be involved in pathological bone destruction. However, the physiological roles of chemokines in bone metabolism in vivo have not been well documented. We analyzed the bone phenotypes in Cx3cr1-deficient mice. The mice exhibited slight but significant increases in trabecular and cortical thickness, reduced numbers of osteoclasts and increased rates of osteoid formation. Although the morphometric parameters showed marginal differences, the Cx3cr1-deficient bones showed an elevated expression of Osterix/SP7, which encodes an essential transcriptional factor for osteoblasts, whereas the gene Osteocalcin/Bglap, which encodes a late marker, was downregulated. The levels of transcripts for various osteoclastic markers, such as receptor activator of NF-κB (RANK)/TNFRSF11A, receptor activator of NF-κB ligand (RANKL)/TNFSF11, tartrate-resistant acid phosphatase 5b (TRAP5B)/ACP5B, Cathepsin K(CTSK), MMP3 and MMP13, were significantly decreased in the Cx3cr1-deficient bones. Cultured Cx3cr1-deficient osteoblastic cells showed inverse temporal patterns of osteoblastic marker expression and reduced calcium deposition. Furthermore, in vitro studies and immunofluorescence staining against CX3CR1 and CX3CL1 suggested a role for the CX3CR1-CX3CL1 axis in an early stage of osteoblast differentiation, possibly through their trans and cis interactions. Cultured Cx3cr1-deficient pre-osteoclasts showed impaired differentiation, mainly due to a deficiency of the CD115(+)CD11b(lo) osteoclastogenic population of myeloid-lineage precursors. The treatment of bone-marrow-derived osteoclastic cultures with recombinant CX3CL1 at different time points suggested that the CX3CR1-CX3CL1 axis favors the maintenance of osteoclastic precursors, but not differentiated osteoclasts. These observations uncovered novel roles of the CX3CR1-CX3CL1 axis in the differentiation of both osteoblasts and osteoclasts.
منابع مشابه
HOSHINO et al Role of CX3CR1 in bone metabolism 1 Roles of chemokine receptor CX3CR1 in maintaining murine bone homeostasis through the regulation of both osteoblasts and osteoclasts Running title: The CX3CR1-CX3CL1 axis in bone metabolism
Akiyoshi Hoshino†, Satoshi Ueha, Sanshiro Hanada, Toshio Imai, Masako Ito, Kenji Yamamoto, Kouji Matsushima, Akira Yamaguchi and Tadahiro Iimura 1 Section of Oral Pathology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 2Global Center of Excellence (GCOE) Program, International Research Center for Molecular Science in Tooth and Bone Diseases, Tokyo Medical...
متن کاملRegulation of Bone Metabolism
Bone is formed through the processes of endochondral and intramembranous ossification. In endochondral ossification primary mesenchymal cells differentiate to chondrocytes and then are progressively substituted by bone, while in intramembranous ossification mesenchymal stem cells (MSCs) differentiate directly into osteoblasts to form bone. The steps of osteogenic proliferation, differentiation,...
متن کاملRole of CX3CL1/fractalkine in osteoclast differentiation and bone resorption.
The recruitment of osteoclast precursors toward osteoblasts and subsequent cell-cell interactions are critical for osteoclast differentiation. Chemokines are known to regulate cell migration and adhesion. CX3CL1 (also called fractalkine) is a unique membrane-bound chemokine that has dual functions for cells expressing its receptor CX3CR1: a potent chemotactic factor in its soluble form and a ty...
متن کاملThe Multiple Roles of Microrna-223 in Regulating Bone Metabolism.
Bone metabolism is a lifelong process for maintaining skeletal system homeostasis, which is regulated by bone-resorbing osteoclasts and bone-forming osteoblasts. Aberrant differentiation of osteoclasts and osteoblasts leads to imbalanced bone metabolism, resulting in ossification and osteolysis diseases. MicroRNAs (miRNAs) are pivotal factors in regulating bone metabolism via post-transcription...
متن کاملBidirectional ephrinB2-EphB4 signaling controls bone homeostasis.
Bone homeostasis requires a delicate balance between the activities of bone-resorbing osteoclasts and bone-forming osteoblasts. Various molecules coordinate osteoclast function with that of osteoblasts; however, molecules that mediate osteoclast-osteoblast interactions by simultaneous signal transduction in both cell types have not yet been identified. Here we show that osteoclasts express the ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of cell science
دوره 126 Pt 4 شماره
صفحات -
تاریخ انتشار 2013